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Abstract We investigate how sea surface temperatures (SSTs)
around Antarctica respond to the Southern Annular Mode
(SAM) on multiple timescales. To that end we examine the
relationship between SAM and SST within unforced prein-
dustrial control simulations of coupled general circulation
models (GCMs) included in the Climate Modeling Inter-
comparison Project phase 5 (CMIP5). We develop a tech-
nique to extract the response of the Southern Ocean SST to
a hypothetical step increase in the SAM index. We demon-
strate that in many GCMs, the expected SST step response
function is nonmonotonic in time. Following a shift to a pos-
itive SAM anomaly, an initial cooling regime can transition
into surface warming around Antarctica. However, there are
large differences across the CMIP5 ensemble. In some mod-
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els the step response function never changes sign and cool-
ing persists, while in other GCMs the SST anomaly crosses
over from negative to positive values only three years af-
ter a step increase in the SAM. This intermodel diversity
can be related to differences in the models’ climatological
thermal ocean stratification in the region of seasonal sea ice
around Antarctica. Exploiting this relationship, we use ob-
servational data for the time-mean meridional and vertical
temperature gradients to constrain the real Southern Ocean
response to SAM on fast and slow timescales.

Keywords Southern Ocean · Southern Annular Mode ·
surface westerlies · Atmosphere-ocean interaction · CMIP5

1 Introduction

In contrast to the strong global warming trend, the Southern
Ocean (SO) has exhibited a gradual decrease in sea surface
temperatures (SSTs) over recent decades (Figure 1, [Fan et
al., 2014; Armour et al., 2015]). The large-scale geographic
patterns of delayed and accelerated warming are related to
the climatological background ocean circulation [Marshall
et al., 2014; Marshall et al., 2015, Armour et al., 2015;
Hutchinson et al., 2013; and Hutchinson et al., 2015]. The
high latitudes of the SO constitute an open channel with
zonal flow, where the Antarctic Circumpolar Current (ACC)
acts to thermally isolate the Antarctic region and limit pole-
ward heat transport into the SO [Hutchinson et al., 2013;
Hutchinson et al., 2015]. Moreover, in this region deep wa-
ters, unmodified by greenhouse gas forcing, are upwelled at
the surface where they take up heat as the mean wind-driven
circulation – partially compensated by the eddy circulation
– transports them northward [Marshall et al., 2015; Armour
et al., 2015]. The background circulation can therefore slow
down the rate of surface warming in the SO relative to the
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rest of the World Ocean. However, this mechanism of pas-
sive heat transport is not sufficient to explain the persistent
cooling trends around Antarctica.

Some studies interpret the pattern of observed South-
ern Hemisphere SST trends as a response to a poleward
shift and strengthening of the westerlies. These recent ten-
dencies in the atmospheric circulation resemble the positive
phase of the Southern Annular Mode (SAM) of natural vari-
ability, but they may in fact be a forced response [Thomas
et al., 2015], the result of ozone depletion [Thompson and
Solomon, 2002; Gillett and Thompson, 2003; Sigmond et
al., 2011; Thompson et al., 2011; Wang et al., 2014]. Fig-
ure 1 illustrates the synchronous evolution of observed SST
and SAM anomalies over the SO. The SST averaged be-
tween 55◦S to 70◦S is negatively correlated to the SAM in-
dex with R =−0.65 at a lag of 1 year. Multiple mechanisms
have been proposed to explain the relationship between SST
trends around Antarctica and poleward intensification of the
westerlies.

Many studies conclude that a poleward intensification of
the westerlies impacts SO SSTs by changing the ocean cir-
culation [e.g., Hall and Visbeck, 2002; Oke and England,
2004; Russell et al., 2006; Fyfe et al., 2007; Ciasto and
Thompson, 2008; Bitz and Polvani, 2012; Marshall et al.,
2014; Purich et al., 2016]. The recent circulation changes
have been confirmed by measurements of dissolved passive
tracers [Waugh et al., 2013; Waugh, 2014]. A positive SAM
induces anomalous northward Ekman transport in the high
latitude region of the Southern Hemisphere [Hall and Vis-
beck, 2002]. This gives rise to surface cooling poleward of
50◦S. Ciasto and Thompson [2008] and Sen Gupta and Eng-
land [2006] propose that the aforementioned oceanic mech-
anism complements SAM induced changes in the surface
heat fluxes, and that both processes act in concert to set the
spatial distribution of temperature anomalies around Antarc-
tica.

Unlike Ciasto and Thompson [2008], Bitz and Polvani
[2012] demonstrate that in the coupled CCSM3.5 GCM, an
ozone-driven poleward intensification of the westerlies leads
to an increase in SSTs throughout the SO. This result im-
plies that changes in the winds cannot account for the ob-
served cooling around Antarctica and may even have the
opposite effect. Bitz and Polvani [2012] explain that pole-
ward intensification by itself can lead to a positive SST re-
sponse via anomalous Ekman upwelling of warmer water in
the salinity-stratified circumpolar region. This highlights an
apparent divergence in literature about the sign of the SO
SST anomalies associated with a SAM-like pattern. A sim-
ilar lack of consensus also carries over to studies which ex-
plore the connection between the westerly winds and SO sea
ice. Hall and Visbeck [2002] suggest that a positive SAM
causes sea ice expansion, while Sigmond and Fyfe [2014]

demonstrate that poleward intensification (forced by ozone
depletion) is associated with a decrease in marine ice extent.

Ferreira et al. [2015] propose a theoretical framework
that can resolve this ostensible disagreement about the sign
of the SST anomaly associated with a poleward intensifica-
tion of the westerlies. They use two different coupled GCMs
to demonstrate that the SO response to winds in forced ozone
depletion simulations is timescale-dependent. An atmospheric
pattern similar to a positive SAM triggers short-term cool-
ing followed by slow warming around Antarctica. The fast
response is dominated by horizontal Ekman drift advecting
colder water northward, while the slow response is sustained
by Ekman upwelling of warmer water. Ferreira et al. [2015]
show that the transition between the cooling and warming
regime differs between two coupled GCMs.

In our work we examine how the SO responds to a pole-
ward intensification of the westerlies in 23 state-of-the-art
CMIP5 coupled models [Taylor et al., 2012]. By analyzing
the GCMs’ control simulations, we are able to study the rela-
tionship between SAM and SO SST anomalies even in mod-
els which have not performed wind override experiments
or targeted ozone depletion simulations. In agreement with
Ferreira et al. [2015], our findings suggest that anomalous
Ekman transport governs the SO response to SAM on in-
terannual and decadal timescales. Furthermore, we interpret
the diversity in the fast and slow responses across the CMIP5
ensemble in terms of the models’ time-mean SO stratifica-
tion. Finally, we use observational data for the ocean temper-
ature climatology to constrain the SST step response func-
tion of the real SO.

2 Data and methods

The GCMs used in this study have made their experimen-
tal results publicly available through the CMIP5 initiative
[Taylor et al., 2012]. In our ensemble we include 23 mod-
els that have archived their output of ocean potential tem-
perature, SST, and sea level pressure (SLP). We examine
data from the CMIP5 preindustrial control simulations (pi-
Control), which do not have any sources of external forc-
ing. Thus all climate anomalies that we observe in these
experiments can be attributed to internal variability. More-
over, the control simulations are hundreds of years long al-
lowing us to perform statistical analysis with large samples
of data. Table 1 provides additional information about the
length of individual CMIP5 simulations. In order to conduct
our analysis consistently across the ensemble, we convert all
model output fields to the same regular latitude-longitude
grid (0.5◦×1◦).

We define an annual-mean index for the SAM in each
model as the first principal component of variability in SLP
south of 20◦S. Positive values of this index correspond to
a poleward intensification of the westerly winds. In order
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to remove the secular drift, we linearly detrend the SAM
timeseries.

We calculate an area-weighted average of the annual-
mean SST anomalies between 55◦S and 70◦S. As with the
SAM index, we detrend the SST timeseries to eliminate the
long-term drift. A comparison of the SO SST anomalies
against the SAM index in CMIP5 models shows negative
correlations at short lags (Figure 2). This is reminiscent of
the synchronous evolution of westerly winds and SO SST
seen in observations (Figure 1).

For each GCM, we estimate the impulse response func-
tion G (Green’s function) of SO SST (55◦S to 70◦S) with re-
spect to the SAM index. Following Hasselmann et al. [1993],
we assume that the temperature timeseries can be repre-
sented as a convolution of G with a previous history of the
SAM forcing:

SST (t) =
∫ +∞

0
G(τ)SAM(t− τ)dτ + ε

≈
∫

τmax

0
G(τ)SAM(t− τ)dτ + ε, (1)

where SAM(t) is the SAM index normalized by its standard
deviation σSAM , τ is the time lag in years, τmax is an imposed
maximum cutoff lag, and ε is residual noise. We discretize
equation (1) to obtain

SST (t)≈
τmax

∑
i=0

G(i)SAM(t− i)+ ε, (2)

where coefficients G(i) represent the response at different
time steps after an impulse perturbation of magnitude σSAM .
We then use a linear least-squares regression of the SO SST
signal against the lagged SAM index to estimate G(i) for
i = 0, ..,τmax.

In our intercomparison we take into account differences
in the magnitude of SAM variability across the set of 23
models. We calculate σSAM

Ens, the ensemble mean of the
index standard deviations σSAM . We then rescale the esti-
mated impulse response functions for each GCM, where we
multiply G(i) by the corresponding nondimensional ratio
σSAM

Ens/σSAM .
By selecting multiple shorter SST and SAM timeseries

from the full control simulation and by varying the cutoff
lag τmax, we obtain a spread of estimates for the impulse
response function G(τ) in a given model. Table 2 lists our
fitting parameters and their values. We use the residuals ε to
quantify the uncertainty σGreensFit(t) on each of these least
squares regressions. Figure 3a shows examples of impulse
response estimates for three CMIP5 models, rescaled by σSAM

Ens/σSAM .
Multiple fits span envelopes of uncertainty, while vertical
bars denote the error margins σGreensFit(t) on each fit. Note
that in our analysis we use annual-mean SST. Hence the es-
timated Year 0 response is not zero, as it represents an aver-
age of the SST anomaly over the first months after a positive
SAM impulse.

We integrate the impulse response function fits to obtain
a spread of estimates for the SO step response function:

SSTStep(t) =
∫ t

0
G(τ)dτ

≈
t

∑
i=0

G(i), t ≤ τmax. (3)

Each of the estimates corresponds to a different combination
of start and end times for the timeseries, as well as different
choices of τmax. We calculate the mean SSTStep(t) and the
standard deviation σSpread(t) which characterize our enve-
lope of step response functions for a given model. We fur-
thermore use the σGreensFit(t) values to constrain the margin
of error σStepFit(t) on each individual estimate in our spread.
We then combine σStepFit(t) and σSpread(t) in quadrature
in order to quantify the total uncertainty σSST step(t) on the
mean SSTStep(t) for a given GCM.

Figure 3b shows example step response functions calcu-
lated for the three models presented in Figure 3a. For each
of the GCMs, we have shown only 100 different estimates,
illustrating envelopes of uncertainty. In comparison, in our
full analysis we perform more than 350 fits per model by
selecting shorter timeseries from the control simulation and
by specifying different values for τmax. The vertical bars in
Figure 3 indicate the error margins σStepFit(t) based on the
residuals of each regression.

The step response results are integral quantities, and hence
they are smoother than the corresponding impulse response
functions. However, a drawback is that the integrated errors
grow larger in time. Nevertheless, Figure 3b demonstrates
that even with generous envelopes of uncertainty and large
error bars on the individual fits, we can still distinguish the
estimated step response functions of different CMIP5 mod-
els.

We use synthetic noisy signals and artificially constructed
systems with known step responses in order to test our method-
ology. The verification procedure is described and illustrated
in detail in Appendix A. Multiple tests confirm the validity
of our approach for estimating the SO response functions.

3 Results

Our estimated step response functions suggest notable inter-
model differences in the SO SST response to SAM across
the CMIP5 ensemble (Figure 4). Although all GCMs show
initial cooling, many of them transition into a regime of
gradual warming. If forced with a positive step increase in
the SAM, a number of CMIP5 models – such as CanESM2,
CCSM4, and CESM-CAM5 – are expected to show posi-
tive SST anomalies in the SO within a few years. In con-
trast, other ensemble members, including CNRM-CM5 and
GFDL-ESM2M, do not exhibit such nonmonotonic response
to a poleward intensification of the westerlies and instead
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maintain negative temperature anomalies persisting for longer
than a decade. What sets this intermodel diversity in the way
the SO reacts to SAM on short and long timescales?

Following Ferreira et al. [2015], we examine whether
the fast cooling regime is governed by northward wind-driven
transport, advecting colder water up the climatological SO
SST gradient. The anomalous horizontal heat flux Qhor [W/m2]

in the SO Ekman layer of depth ZEk scales as

Qhor ∝ Cp
[τ ′x]

f ZEk
∂y[SST ], (4)

where Cp ≈ 4× 103 J/kg/K is the specific heat of water,
[τ ′x] is the zonally averaged zonal component of the anoma-
lous surface wind-stress associated with SAM, f is the Cori-
olis parameter, and ∂y[SST ] is the meridional gradient of
the zonally averaged climatological SST. As in Ferreira et
al. [2015], we have assumed that eddy compensation in the
thin Ekman layer is much smaller than the anomalous north-
ward wind-driven transport. Since we have rescaled each
SST response function by σSAM

Ens/σSAM , we have elimi-
nated some of the intermodel differences due to [τ ′x].

When we regress the estimated Year 1 cooling anoma-
lies from our step responses against ∂y[SST ] averaged be-
tween 55◦ and 70◦S, we see a strong anticorrelation with a
Pearson’s R = −0.72 (Figure 5a). This result is significant
at the 5% level with p < 0.01 and highlights the importance
of horizontal Ekman transport for governing the fast cooling
regime during a positive phase of the SAM.

We also consider the role of Ekman upwelling for setting
the long-term response to a step increase in the SAM in-
dex. We assume that the anomalous vertical heat flux Qvert
[W/m2] in a subsurface layer of thickness Zsub can be ap-
proximated as

Qvert ∝ −δγCp

(
∂

∂y

[
τ ′x
f

])
∆z[θ ]

Zsub
, (5)

where ∆z[θ ] in ◦C is the inversion (i.e., the maximum ver-
tical contrast) in the time-mean ocean potential tempera-
ture within the layer, and γ (unitless) denotes the efficiency
with which the subsurface warming signal is communicated
into the mixed layer. Parameter δ is a nondimensional factor
0≤ δ ≤ 1 that indicates whether we have full (δ = 0), partial
(0 < δ < 1), or no (δ = 1) compensation of the anomalous
Ekman upwelling by the eddy-induced circulation.

If the slow response is indeed governed by upwelling
of warmer water below the mixed layer, the bolus circula-
tion cannot be neglected [Ferreira et al., 2015]. Moreover,
the fraction of eddy compensation (1− δ ) is model depen-
dent. The representation of mixed layer entrainment pro-
cesses also differs across the CMIP5 ensemble. We therefore
expect that both δ and γ may contribute to the intermodel
spread in the slow SST response, along with the climatolog-
ical SO temperature inversion ∆z[θ ].

Using Equation 5 as an Ansatz, we test the importance of
the background thermal stratification ∆z[θ ] for setting differ-
ences in the slow response among CMIP5 GCMs. We cal-
culate the average slope Λ [◦C/year] of the step response
functions between Year 1 and Year 7 after a step increase
in the SAM. In many models this slope is predicted to be
positive, corresponding to a slow warming. We compare Λ

against the vertical temperature inversion ∆z[θ ] for the area-
averaged water column between 55◦ and 70◦S and between
depths of 65 m and 550 m. We find that the slow response
rates Λ across models are positively correlated with ∆z[θ ],
with R = +0.45 (Figure 5b. This result is statistically sig-
nificant with p < 0.05. It emphasizes that Ekman upwelling
acting on the background temperature gradients contributes
substantially to the intermodel spread in the slow SST re-
sponses to SAM.

The correlation between the rate Λ and the vertical tem-
perature inversion ∆z[θ ] is not as strong as our result link-
ing the rapid cooling response to the meridional SST gradi-
ents. We propose that the slow regime is more complicated
than the fast one due in part to air-sea heat exchange [Fer-
reira et al., 2015] but also due to multiple diverse processes
within the ocean domain such as eddy compensation and
mixed layer entrainment represented by coefficients δ and γ

in Equation 5.
We acknowledge that the data points in our intermodel

correlation analysis of the fast and slow response (Figures
5a and 5b) do not necessarily represent independent sam-
ples. Some CMIP5 ensemble members are in fact multiple
versions of the same GCM with a different horizontal res-
olution (e.g., MPI-ESM-LR and MPI-ESM-MR). Other en-
semble members are developed by the same institution (e.g.,
GFDL-CM3, GFDL-ESM2G, and GFDL-ESM2M) or be-
long to the same family of models and hence share com-
mon code or parameterizations [Knutti et al., 2013]. Thus it
is possible that we are inflating our sample size by redun-
dantly including interdependent GCMs. On the other hand,
we cannot know a priori which models may exhibit similar-
ities or differences solely on the basis of their common ge-
nealogy. For instance, models MIROC-ESM and MIROC5
are related, but their predicted fast SST responses to SAM
are statistically different (Figure 5a).

While acknowledging the limitations of this regression
analysis, we attempt to extend our CMIP5 results to the real
SO and place an observational constraint on the SST re-
sponse to SAM. We calculate the climatological meridional
SST gradients using data from the Reynolds Optimum In-
terpolation [Reynolds et al., 2002] and compute a metric for
time-mean vertical contrast in potential temperature using
the Hadley Centre EN4 product [Good et al., 2013]. We use
these observationally based climatological SO temperature
gradients and the linear relationships found among CMIP5
models (Figure 5) to estimate the fast and slow responses
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in the real SO (denoted with stars in Figures 5a and 5b).
Our results suggest an expected cooling of −0.13◦C, with a
standard error of 0.01◦C, one year after a step increase in the
SAM index. This is likely to be followed by a gradual reduc-
tion in the negative SST anomaly at a rate of 0.014◦C/year,
with a standard error of 0.003◦C/year. The schematic Figure
6 illustrates our estimate for the SST step response function
of the real SO.

4 Conclusions and discussion

In this study we have analyzed CMIP5 preindustrial control
simulations and examined how SAM forces SO SSTs. In
many GCMs the SST exhibits a two-timescale response to
SAM: initial cooling followed by slow warming. As in Fer-
reira et al. [2015], we interpret the evolution of these tem-
perature anomalies in terms of the wind-driven circulation
redistributing the background heat reservoir. We show evi-
dence that anomalous equatorward transport of colder water
is responsible for the fast cooling response south of 50◦S.
Our results also suggest that the slow warming regime found
in many GCMs is sustained by Ekman upwelling of warmer
water in the haline stratified SO.

Across the CMIP5 ensemble, we find a notable inter-
model spread in the SO SST response to poleward inten-
sification of the westerlies. We relate the diversity of step
response functions to differences in the background ther-
mal stratification among the models. GCMs that have small
meridional and large vertical temperature gradients in their
SO climatology transition faster between the initial cooling
and the slow warming regime. Our results imply that in order
to better simulate the SST response to SAM, models need a
realistic ocean climatology around Antarctica.

The model-specific results of our analysis have impli-
cations for attribution studies which evaluate the effects of
greenhouse gas forcing and ozone depletion on the SO. For
example, Sigmond and Fyfe [2014] analyze CMIP3 and CMIP5
output to determine the impact of the ozone hole on SO sea
ice. Similarly, Solomon et al. [2015] design and conduct nu-
merical experiments with CESM1(WACCM) to study how
ozone depletion affects the circulation and sea water prop-
erties of the SO. Such in-depth attribution studies often em-
ploy a limited set of GCMs – for instance, only a few CMIP5
modeling groups provide output from ozone-only simula-
tions [Sigmond and Fyfe, 2014]. However, individual GCMs
have various biases in their mean ocean climatology [e.g.,
Meijers et al., 2014; Salleé et al., 2013]. Thus, we emphasize
that the outcome of attribution experiments can be sensitive
to the choice of models used. Realistic background temper-
ature gradients are a prerequisite for simulating successfully
the response of the SO to a poleward intensification of the
westerlies, as the one seen in numerical experiments with
ozone depletion.

Our results also identify criteria for constraining and crit-
ically assessing future projections of the Southern Hemi-
sphere SST anomalies. Under scenarios with extended green-
house gas emissions and gradual ozone recovery, CMIP5
models predict a significant and lasting poleward intensifi-
cation of the westerlies throughout the 21st century [Wang
et al., 2014]. Based on our analysis, we suggest that those
models which have smaller biases in their climatological
stratification provide better estimates of future SST anoma-
lies in the SO.

We point out that in our analysis we have neglected sea-
sonal variations in ocean stratification and their impact on
the SO SST response to wind changes. Purich et al. [2016]
emphasize that in the summer a warm surface lens caps the
colder subsurface winter water. Therefore, during this sea-
son, anomalous Ekman upwelling may complement rather
than counteract the cooling effect of northward Ekman tran-
port.

Our study has further limitations in its ability to account
for the multiple diverse processes that take place in the SO.
For example, de Lavergne et al. [2014] show that there are
large differences among the CMIP5 models in their repre-
sentation of deep convection around Antarctica. It is possi-
ble that certain GCMs which do not have strong SO convec-
tion, such as BCC-CSM1 and CNRM-CM5, may not be able
to efficiently communicate a subsurface temperature signal
into the mixed layer. This in turn can delay or preclude en-
tirely the slow warming response to SAM in these models.
The recurrence of convective and nonconvective periods in
GCMs can also modify the variability of SO stratification
about its mean climatology and affect the transition between
the fast and slow SST responses [Seviour et al., 2016].

Another potential deficiency in our work pertains to our
treatment of atmosphere-ocean coupling. We have not ex-
plored any possible intermodel differences in the response of
SO surface heat fluxes to SAM. In our linear response func-
tion analysis, we have also assumed that the SAM wind pat-
tern forces the SST but not vice versa. However, Sen Gupta
and England [2007] suggest that SO SST anomalies may
feed back on the atmospheric circulation and increase the
persistence of SAM. We treat such mechanisms as a source
of error contributing to the uncertainty on our estimates of
the step response functions.

It is also important to note that the CMIP5 ensemble
members used in our analysis do not resolve eddies and rely
on parameterizations. Therefore, these GCMs may be miss-
ing an important element of the ocean’s response to winds.
Böning et al. [2008] present observational evidence indi-
cating that isopycnal slopes in the SO have not changed
over the last few decades despite trends in the SAM. The
Böning et al. [2008] results are consistent with the eddy-
compensation phenomenon and support the possibility that
unresolved eddy processes can strongly modulate anomalies
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in the wind-driven circulation. Despite this shortcoming of
our study, we reiterate that it is important to understand how
poleward intensifying westerlies impact the SO in the very
same models that are widely used to analyze historical cli-
mate change and make authoritative future projections.

Finally, our analysis can be used to make a qualitative
estimate for the SST response to SAM in the real SO. Our
results suggest that during a sustained positive phase of the
SAM, SO SSTs can exhibit a non-monotonic evolution. A
strong and rapid transient cooling may be followed by a
gradual recovery. However, our results do not suggest a large
warming rate during the slow response to SAM.

Our results have implications for surface heat uptake in
the real SO and for the persistent expansion of the sea ice
cover around Antarctica. The positive SAM trend over the
last decades may have allowed a cooler SO to absorb more
excess heat from the atmosphere in a warming world. Fur-
thermore, SAM-induced negative SST anomalies may have
contributed to the observed increase in SO sea ice extent
[Holland et al., 2015; Kostov et al., 2016]. However, if the
real SO exhibits a two-timescale response to SAM, the ob-
served SST trends may reverse sign. Hence a sustained pole-
ward intensification of the westerly winds – due to ozone
and greenhouse gas forcing – can eventually contribute to a
surface warming of the SO, a decreased rate of heat uptake,
and a reduction in sea ice concentration. It is therefore im-
portant to constrain both the short-term and the long-term
SO SST response to SAM.

Appendix A. Verification of the Methodology

We test our methodology from Section 2 in order to ascer-
tain its reliability. Our verification procedure involves ap-
plying the regression algorithm to systems with a known
prescribed step response function. The latter is convolved
with a randomly generated order 1 autoregressive timeseries
(AR(1)) that is 1000 years long and resembles a SAM forc-
ing. The result of the convolution is our synthetic SST re-
sponse, which is strongly diluted with a different AR(1) pro-
cess characterized by longer memory. We choose parame-
ters for the AR(1) models such that their autocorrelations re-
semble those of SAM and SO SST timeseries in the CMIP5
GCMs (for instance, Figure 7a and c). We conduct multiple
verification tests with different choices of AR(1) parameters.
We also vary the signal to noise ratio in our synthetic SST.
Figure 7b and d show examples from two different tests.

Within every test we generate an ensemble of multiple
synthetic SAM and SST signals with the same statistical
properties but different random values. We apply our algo-
rithm separately to each realization in the same fashion as
our analysis of CMIP5 control simulations. The verification
tests confirm the validity of our method for estimating step
response functions.

Table 1 List of CMIP5 Control Simulations

Model Name Control Run
Length [Years]

ACCESS1-0 500

ACCESS1-3 500

BCC-CSM1 500

CanESM2 996

CCSM4 1051

CESM-CAM5 319

CMCC-CM 330

CNRM-CM5 850

GFDL CM3 500

GFDL-ESM2G 500

GFDL-ESM2M 500

GISS-E2-H 540

GISS-E2-R 550

IPSL-CM5A-LR 1000

IPSL-CM5A-MR 300

IPSL-CM5B-LR 300

MIROC5 670

MIROC-ESM 630

MPI-ESM-LR 1000

MPI-ESM-MR 1000

MRI-CGCM3 500

NorESM1-M 501

NorESM1-ME 252

Table 2 Fitting Parameters. We vary the maximum cutoff lag τmax
[Years]. Note that we use only τmax = 50 years and τmax = 75 years
for models whose control simulation is shorter than 350 years. We use
four different values of τmax = 50 where longer simulations are avail-
able. We also select shorter SST timeseries from the full control simu-
lations by removing a certain percent of time steps from the beginning
and the end of each model run.

Fitting Parameter Parameter Space

τmax [Years] 50, 75, 100, 150

Offset from the beginning
of the full timeseries 0, 2.5, 5, 7.5, 10, 15,
[% of simulation length] 20, 25, 30, 35, 40

Offset from the end
of the full timeseries 0, 2.5, 5, 7.5, 10, 15,
[% of simulation length] 20, 25, 30
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Fig. 1 Shown in black is the 1982-2014 timeseries of SST [◦C] averaged between 55◦S and 70◦S based on the NOAA Reynolds Optimum
Interpolation [Reynolds et al., 2002]. The 1980-2014 timeseries of the annual-mean SAM index based on the ERA Interim reanalysis [Dee et al.,
2011] is superimposed in gray. The index is defined as the first principal component of SLP variability south of 20◦S and is normalized by its
standard deviation. Solid lines indicate linear trends fitted to each timeseries. Note the reversed scale for the SAM timeseries shown on the right.
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Fig. 2 Timeseries from the control simulation of model CCSM4: the SAM index in gray and the Southern Ocean (SO) SST anomaly averaged
between 55◦S to 70◦S in black. Each index is detrended and rescaled by its standard deviation. The SST scale is shown on the left vertical axis,
and the reversed scale for the SAM index is shown on the right. The SO SST is negatively correlated to the SAM index with R =−0.37 at a lag of
1 year.
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Fig. 3 Annual-mean response of the Southern Ocean SST anomaly [◦C] to: a) a positive impulse perturbation in the SAM index of magnitude
equal to σSAM

Ens; b) a positive step increase in the SAM index of magnitude equal to σSAM
Ens. Different colors are used to distinguish the response

functions in the three CMIP5 models shown: CCSM4, MPI-ESM-MR, and CNRM-CM5. For each model we show 100 fits that outline an envelope
of uncertainty. Vertical error bars denote the margin of error for each fit.
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Fig. 4 Annual-mean responses of the Southern Ocean SST [◦C] to a step increase in the SAM index of magnitude σSAM
Ens – comparison across

the CMIP5 ensemble. For each model we have shown only the mean estimate SSTStep(t).
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Fig. 5 a) Relationship between the models’ climatological meridional SST gradients ∂y[SST ] [ ◦C / 100 km ] in the Southern Ocean (55◦-70◦S)
and the Year 1 SST response SSTStep(t = 1) [◦C] to a step perturbation in the SAM index. The vertical error bars correspond to σSST step(t = 1).
b) Relationship between the climatological temperature inversion ∆z[θ ] [ ◦C ] in the Southern Ocean (depth levels 65 m to 550 m) and the SST
warming rate Λ [◦C / year] which characterizes the slow response to a step increase in the SAM index. Legend: both a) and b) use the same color
code and alphabetical order as in Figure 4 to distinguish the CMIP5 models analyzed. Straight lines indicate linear fits to the scatter where each data
point is weighed by its uncertainty. The yellow stars denote estimates for the response of the real Southern Ocean based on observed climatological
meridional SST gradients between 55◦S and 70◦S (NOAA Reynolds Optimum Interpolation Reynolds et al. [2002]) and the climatological ∆z[θ ]
inversion (Hadley Centre EN4 dataset, Good et al. [2013]).
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Fig. 6 Thick solid black lines: schematic for the estimated response of the real SO SST [◦C] based on results from Figure 5. Thick dashed black
lines denote two projections beyond Year 7: a linear extrapolation and a constant equilibrium. Thin gray lines indicate the estimated SO SST step
response functions [◦C] for the ensemble of 23 CMIP5 models shown with a different color scheme in Figure 4
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Fig. 7 Application of the regression algorithm to systems with a known prescribed step response function. On the top row we show a test case
where we assume long memory in our SAM and SST signals. The SST signal is diluted such that 60% of the variance is noise. In panel a) on the
left, we show the lagged autocorrelations of SAM and SST in CCSM4 (gray dashed curves) and our synthetic artificially generated signals (solid
black curves). In panel b) we show applications of the regression algorithm. The thick black curve is the true prescribed step response function.
The thin gray curves and the vertical bars denote the estimated step response function SSTStep(t) and the uncertainties σSST step(t) produced by
applying our regression algorithm. The two gray curves in panel b) result from analyzing separate realizations in which we use the same prescribed
step response and AR timeseries with the same statistical properties (illustrated in a)) but different random values. On the bottom row we show
a test case where we assume shorter memory in the SAM and SST signals, but the SST signal is diluted with more noise, such that the forced
response contributes only 20% of the total variance. Panels c) and d) are analogous to panels a) and b).


